Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 2769, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589699

RESUMO

Calcium entering mitochondria potently stimulates ATP synthesis. Increases in calcium preserve energy synthesis in cardiomyopathies caused by mitochondrial dysfunction, and occur due to enhanced activity of the mitochondrial calcium uniporter channel. The signaling mechanism that mediates this compensatory increase remains unknown. Here, we find that increases in the uniporter are due to impairment in Complex I of the electron transport chain. In normal physiology, Complex I promotes uniporter degradation via an interaction with the uniporter pore-forming subunit, a process we term Complex I-induced protein turnover. When Complex I dysfunction ensues, contact with the uniporter is inhibited, preventing degradation, and leading to a build-up in functional channels. Preventing uniporter activity leads to early demise in Complex I-deficient animals. Conversely, enhancing uniporter stability rescues survival and function in Complex I deficiency. Taken together, our data identify a fundamental pathway producing compensatory increases in calcium influx during Complex I impairment.


Assuntos
Canais de Cálcio , Cálcio , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Homeostase , Mitocôndrias/metabolismo
3.
Circ Heart Fail ; 15(3): e008910, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34865514

RESUMO

BACKGROUND: Extrinsic control of cardiomyocyte metabolism is poorly understood in heart failure (HF). FGF21 (Fibroblast growth factor 21), a hormonal regulator of metabolism produced mainly in the liver and adipose tissue, is a prime candidate for such signaling. METHODS: To investigate this further, we examined blood and tissue obtained from human subjects with end-stage HF with reduced ejection fraction at the time of left ventricular assist device implantation and correlated serum FGF21 levels with cardiac gene expression, immunohistochemistry, and clinical parameters. RESULTS: Circulating FGF21 levels were substantially elevated in HF with reduced ejection fraction, compared with healthy subjects (HF with reduced ejection fraction: 834.4 [95% CI, 628.4-1040.3] pg/mL, n=40; controls: 146.0 [86.3-205.7] pg/mL, n=20, P=1.9×10-5). There was clear FGF21 staining in diseased cardiomyocytes, and circulating FGF21 levels negatively correlated with the expression of cardiac genes involved in ketone metabolism, consistent with cardiac FGF21 signaling. FGF21 gene expression was very low in failing and nonfailing hearts, suggesting extracardiac production of the circulating hormone. Circulating FGF21 levels were correlated with BNP (B-type natriuretic peptide) and total bilirubin, markers of chronic cardiac and hepatic congestion. CONCLUSIONS: Circulating FGF21 levels are elevated in HF with reduced ejection fraction and appear to bind to the heart. The liver is likely the main extracardiac source. This supports a model of hepatic FGF21 communication to diseased cardiomyocytes, defining a potential cardiohepatic signaling circuit in human HF.


Assuntos
Fatores de Crescimento de Fibroblastos , Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Insuficiência Cardíaca/genética , Humanos , Peptídeo Natriurético Encefálico/genética
4.
Nat Commun ; 12(1): 4583, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321484

RESUMO

Voltage dependent anion channel 2 (VDAC2) is an outer mitochondrial membrane porin known to play a significant role in apoptosis and calcium signaling. Abnormalities in calcium homeostasis often leads to electrical and contractile dysfunction and can cause dilated cardiomyopathy and heart failure. However, the specific role of VDAC2 in intracellular calcium dynamics and cardiac function is not well understood. To elucidate the role of VDAC2 in calcium homeostasis, we generated a cardiac ventricular myocyte-specific developmental deletion of Vdac2 in mice. Our results indicate that loss of VDAC2 in the myocardium causes severe impairment in excitation-contraction coupling by altering both intracellular and mitochondrial calcium signaling. We also observed adverse cardiac remodeling which progressed to severe cardiomyopathy and death. Reintroduction of VDAC2 in 6-week-old knock-out mice partially rescued the cardiomyopathy phenotype. Activation of VDAC2 by efsevin increased cardiac contractile force in a mouse model of pressure-overload induced heart failure. In conclusion, our findings demonstrate that VDAC2 plays a crucial role in cardiac function by influencing cellular calcium signaling. Through this unique role in cellular calcium dynamics and excitation-contraction coupling VDAC2 emerges as a plausible therapeutic target for heart failure.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Homeostase , Canal de Ânion 2 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Animais , Apoptose , Sinalização do Cálcio , Cardiomiopatia Dilatada/mortalidade , Insuficiência Cardíaca/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Transcriptoma
5.
J Mol Cell Cardiol ; 113: 22-32, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28962857

RESUMO

Calcium (Ca2+) influx into the mitochondrial matrix stimulates ATP synthesis. Here, we investigate whether mitochondrial Ca2+ transport pathways are altered in the setting of deficient mitochondrial energy synthesis, as increased matrix Ca2+ may provide a stimulatory boost. We focused on mitochondrial cardiomyopathies, which feature such dysfunction of oxidative phosphorylation. We study a mouse model where the main transcription factor for mitochondrial DNA (transcription factor A, mitochondrial, Tfam) has been disrupted selectively in cardiomyocytes. By the second postnatal week (10-15day old mice), these mice have developed a dilated cardiomyopathy associated with impaired oxidative phosphorylation. We find evidence of increased mitochondrial Ca2+ during this period using imaging, electrophysiology, and biochemistry. The mitochondrial Ca2+ uniporter, the main portal for Ca2+ entry, displays enhanced activity, whereas the mitochondrial sodium-calcium (Na+-Ca2+) exchanger, the main portal for Ca2+ efflux, is inhibited. These changes in activity reflect changes in protein expression of the corresponding transporter subunits. While decreased transcription of Nclx, the gene encoding the Na+-Ca2+ exchanger, explains diminished Na+-Ca2+ exchange, the mechanism for enhanced uniporter expression appears to be post-transcriptional. Notably, such changes allow cardiac mitochondria from Tfam knockout animals to be far more sensitive to Ca2+-induced increases in respiration. In the absence of Ca2+, oxygen consumption declines to less than half of control values in these animals, but rebounds to control levels when incubated with Ca2+. Thus, we demonstrate a phenotype of enhanced mitochondrial Ca2+ in a mitochondrial cardiomyopathy model, and show that such Ca2+ accumulation is capable of rescuing deficits in energy synthesis capacity in vitro.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Sódio/metabolismo , Trocador de Sódio e Cálcio/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-27833941

RESUMO

Salivary gland bioengineering requires understanding the interaction between salivary epithelium and surrounding tissues. An important component of salivary glands is the presence of neurons. No previous studies have investigated how neurons and salivary epithelial cells interact in an in vitro co-culture model. In this study, we describe the self-organization of neurons around salivary epithelial cells in co-culture, in a similar fashion to what occurs in native tissue. We cultured primary mouse cortical neurons (m-CN) with a salivary epithelial cell line (Par-C10) on growth factor-reduced Matrigel (GFR-MG) for 4 days. After this time, co-cultures were compared with native salivary glands using confocal microscopy. Our findings indicate that m-CN were able to self-organize basolaterally to salivary epithelial cell clusters in a similar manner to what occurs in native tissue. These results indicate that this model can be developed as a potential platform for studying neuron-salivary epithelial cell interactions for bioengineering purposes.

7.
Artigo em Inglês | MEDLINE | ID: mdl-27110599

RESUMO

Resolvin D1 (RvD1) and its aspirin-triggered epimeric form (AT-RvD1) are endogenous lipid mediators (derived from docosahexaenoic acid, DHA) that control the duration and magnitude of inflammation in models of complex diseases. Our previous studies demonstrated that RvD1-mediated signaling pathways are expressed and active in salivary glands from rodents and humans. Furthermore, treatment of salivary cells with RvD1 blocked TNF-α-mediated inflammatory signals and improved epithelial integrity. The purpose of this pilot study was to determine the feasibility of treatment with AT-RvD1 versus dexamethasone (DEX) on inflammation (i.e., lymphocytic infiltration, cytokine expression and apoptosis) observed in submandibular glands (SMG) from the NOD/ShiLtJ Sjögren's syndrome (SS) mouse model before experimenting with a larger population. NOD/ShiLtJ mice were treated intravenously with NaCl (0.9%, negative control), AT-RvD1 (0.01-0.1 mg/kg) or DEX (4.125-8.25 mg/kg) twice a week for 14 weeks beginning at 4 weeks of age. At 18 weeks of age, SMG were collected for pathological analysis and detection of SS-associated inflammatory genes. The AT-RvD1 treatment alone did not affect lymphocytic infiltration seen in NOD/ShiLtJ mice while DEX partially prevented lymphocytic infiltration. Interestingly, both AT-RvD1 and DEX caused downregulation of SS-associated inflammatory genes and reduction of apoptosis. Results from this pilot study suggest that a systemic treatment with AT-RvD1 and DEX alone attenuated inflammatory responses observed in the NOD/ShiLtJ mice; therefore, they may be considered as potential therapeutic tools in treating SS patients when used alone or in combination.

8.
Curr Opin Solid State Mater Sci ; 18(6): 319-328, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25530703

RESUMO

Implantable intracortical microelectrodes face an uphill struggle for widespread clinical use. Their potential for treating a wide range of traumatic and degenerative neural disease is hampered by their unreliability in chronic settings. A major factor in this decline in chronic performance is a reactive response of brain tissue, which aims to isolate the implanted device from the rest of the healthy tissue. In this review we present a discussion of materials approaches aimed at modulating the reactive tissue response through mechanical and biochemical means. Benefits and challenges associated with these approaches are analyzed, and the importance of multimodal solutions tested in emerging animal models are presented.

9.
Front Neuroeng ; 7: 41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25452724

RESUMO

The ability to design long-lasting intracortical implants hinges on understanding the factors leading to the loss of neuronal density and the formation of the glial scar. In this study, we modify a common in vitro mixed cortical culture model using lipopolysaccharide (LPS) to examine the responses of microglia, astrocytes, and neurons to microwire segments. We also use dip-coated polyethylene glycol (PEG), which we have previously shown can modulate impedance changes to neural microelectrodes, to control the cellular responses. We find that microglia, as expected, exhibit an elevated response to LPS-coated microwire for distances of up to 150 µm, and that this elevated response can be mitigated by co-depositing PEG with LPS. Astrocytes exhibit a more complex, distance-dependent response, whereas neurons do not appear to be affected by the type or magnitude of glial response within this in vitro model. The discrepancy between our in vitro responses and typically observed in vivo responses suggest the importance of using a systems approach to understand the responses of the various brain cell types in a chronic in vivo setting, as well as the necessity of studying the roles of cell types not native to the brain. Our results further indicate that the loss of neuronal density observed in vivo is not a necessary consequence of elevated glial activation.

10.
Front Neuroeng ; 7: 33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136315

RESUMO

The reactive response of brain tissue to implantable intracortical microelectrodes is thought to negatively affect their recordable signal quality and impedance, resulting in unreliable longitudinal performance. The relationship between the progression of the reactive tissue into a glial scar and the decline in device performance is unclear. We show that exposure to a model protein solution in vitro and acute implantation result in both resistive and capacitive changes to electrode impedance, rather than purely resistive changes. We also show that applying 4000 MW polyethylene glycol (PEG) prevents impedance increases in vitro, and reduces the percent change in impedance in vivo following implantation. Our results highlight the importance of considering the contributions of non-cellular components to the decline in neural microelectrode performance, and present a proof of concept for using a simple dip-coated PEG film to modulate changes in microelectrode impedance.

11.
Artigo em Inglês | MEDLINE | ID: mdl-19963693

RESUMO

The successful use of implantable neural microelectrodes as neuroprosthetic devices depends on the mitigation of the reactive tissue response of the brain. One of the factors affecting the ultimate severity of the reactive tissue response and the in vivo electrical properties of the microelectrodes is the initial adsorption of proteins onto the surface of the implanted microelectrodes. In this study we quantify the increase in microelectrode impedance magnitude at physiological frequencies following electrode immersion in a 10% bovine serum albumin (BSA) solution. We also demonstrate the efficacy of a common antifouling molecule, poly(ethylene glycol) (PEG), in preventing a significant increase in microelectrode impedance. In addition, we show the feasibility of using long-duration DC voltage pulses to remove adsorbed proteins from the microelectrode surface.


Assuntos
Encéfalo/cirurgia , Eletrodos Implantados , Microeletrodos , Adsorção , Animais , Engenharia Biomédica , Encéfalo/fisiologia , Bovinos , Impedância Elétrica , Técnicas In Vitro , Polietilenoglicóis , Próteses e Implantes , Soroalbumina Bovina , Silício
12.
J Neurosci Methods ; 180(1): 106-10, 2009 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-19427536

RESUMO

The reactive tissue response of the brain to chronically implanted materials remains a formidable obstacle to stable recording from implanted microelectrodes. One approach to mitigate this response is to apply a bioactive coating in the form of an ultra-porous silica sol-gel, which can be engineered to improve biocompatibility and to enable local drug delivery. The first step in establishing the feasibility of such a coating is to investigate the effects of the coating on electrode properties. In this paper, we describe a method to apply a thin-film silica sol-gel coating to silicon-based microelectrodes, and discuss the resultant changes in the electrode properties. Fluorescently labeled coatings were used to confirm coating adherence to the electrode. Cyclic voltammetry and impedance spectroscopy were used to evaluate electrical property changes. The silica sol-gel was found to successfully adhere to the electrodes as a thin coating. The voltammograms revealed a slight increase in charge carrying capacity of the electrodes following coating. Impedance spectrograms showed a mild increase in impedance at high frequencies but a more pronounced decrease in impedance at mid to low frequencies. These results demonstrate the feasibility of applying silica sol-gel coatings to silicon-based microelectrodes and are encouraging for the continued investigation of their use in mitigating the reactive tissue response.


Assuntos
Materiais Revestidos Biocompatíveis/química , Eletrofisiologia/instrumentação , Neurofisiologia/instrumentação , Dióxido de Silício/química , Animais , Encéfalo/fisiologia , Impedância Elétrica , Eletrodos Implantados/efeitos adversos , Eletrodos Implantados/normas , Eletrônica Médica/instrumentação , Eletrônica Médica/métodos , Eletrofisiologia/métodos , Reação a Corpo Estranho/prevenção & controle , Bombas de Infusão Implantáveis/tendências , Microeletrodos/efeitos adversos , Microeletrodos/normas , Neurofisiologia/métodos , Sílica Gel , Análise Espectral/instrumentação , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...